Langsungsaja berikut ini adalah pembahasan soal simak ui 2018 untuk kemampuan dasar bidang matematika dasar yang terdiri dari 15 soal. Artikel ini akan membeberkan berbagai strategi untuk menghadapi simak ui 2019 dilengkapi pembahasan soal soal simak ui tahun tahun lalu. Untuk mengunduh File Gunakan tombol download dibawah ini. PembahasanKomposisi Fungsi Simak UI 2018 Matematika Dasar kode 632 Soal yang Akan Dibahas Gunakan petunjuk C. Diketahui fungsi f ( x) adalah fungsi linear dan g ( x) = 2 x + 1 x + 1 . Jika ( g ∘ f) ( x) = 3 + 1 2 x + 1 selengkapnya Alhamdulillah pada kesempatan kali ini blog berbagi dan belajar kembali akan membagikan pembahasan soal Matematika Dasar pada SIMAK UI (Seleksi Masuk Universitas Indonesia) tahun 2018 untuk kode soal 641. Pembahasan kali ini selain disusun urut dan terinci agar mudah dipahami juga disertai dengan TRIK SUPERKILAT yang mampu mengoptimalkan waktu Pembahasankali ini kita beri judul "Pembahasan Matematika Dasar SIMAK UI 2011 Kode 318".Mungkin untuk beberapa teman pembahasan ini sudah tidak HOTS. Namun bagi saya, karena tujuan pertama dan utama kehadiran blog ini sebagai wadah buat saya menyimpan catatan-catatan penting tentang matematika maka saya posting aja. TgSIL. Soal yang Akan Dibahas Jika $ p $ dan $ q $ adalah akar-akar persamaan $ x^2 + x - 4 = 0 $ , maka nilai $ 5p^2 + 4q^2 + p $ adalah .... A. $ 20 \, $ B. $ 28 \, $ C. $ 32 \, $ D. $ 40 \, $ E. $ 44 $ $\spadesuit $ Konsep Dasar *. Persamaan kuadrat $ ax^2 + bx + c = 0 $ memiliki akar-akar $ x_1 $ dan $ x_2 $ -. Operasi akar-akar $ x_1 + x_2 = \frac{-b}{a} $ dan $ x_1 . x_2 = \frac{c}{a} $ -. Rumus bantu $ x_1^2 + x_2^2 = x_1+x_2^2 - $ -. Akar-akar persamaannya boleh disubstitusikan ke persamaan. $\clubsuit $ Pembahasan *. $ p $ dan $ q $ akar-akar persamaan $ x^2 + x - 4 = 0 $ *. substitusikan $ x = p $ ke persamaannya $\begin{align} x = p \rightarrow x^2 + x - 4 & = 0 \\ p^2 + p - 4 & = 0 \\ p^2 + p & = 4 \end{align} $ *. Operasi akar-akarnya $\begin{align} p+q & = \frac{-b}{a} = \frac{-1}{1} = -1 \\ & = \frac{c}{a} = \frac{-4}{1} = -4 \\ p^2 + q^2 & = p+q^2 - 2pq \\ & = -1^2 - 2. -4 \\ & = 1 + 8 = 9 \end{align} $ *. Menentukan hasil $ 5p^2 + 4q^2 + p $ $\begin{align} 5p^2 + 4q^2 + p & = 4p^2 + p^2 + 4q^2 + p \\ & = 4p^2 + 4q^2 + p^2 + p \\ & = 4p^2 + q^2 + p^2 + p \\ & = 49 + 4 \\ & = 36 + 4 = 40 \end{align} $ Jadi, nilai $ 5p^2 + 4q^2 + p = 40 . \, \heartsuit $ Nomor 1 Hasil perkalian semua solusi bilangan real yang memenuhi $ \sqrt[3]{x} = \frac{2}{1 + \sqrt[3]{x}} $ adalah ... A. $ -8 \, $ B. $ -6 \, $ C. $ 4 \, $ D. $ 6 \, $ E. $ 8 $ Nomor 2 Jika $ 2 + {}^2 \log x = 3 + {}^3 \log y = {}^6 \log x-y $ , maka nilai $ \frac{1}{y} - \frac{1}{x} $ adalah .... A. $ 36 \, $ B. $ 54 \, $ C. $ 81 \, $ D. $ 108 \, $ E. $ 216 \, $ Nomor 3 Misalkan $ p $ dan $ q $ adalah bilangan-bilangan real tidak nol dan persamaan kuadrat $ x^2 + px + q = 0 $ mempunyai solusi $ p $ dan $ q $ , maka $ p^2 - 2q = ... $ A. $ 2 \, $ B. $ 3 \, $ C. $ 4 \, $ D. $ 5 \, $ E. $ 8 $ Nomor 4 Jika $ a - 3 = -b - 4 = -c - 5 = d + 6 = $ $ e + 7 = a-b-c+d+e+8 $ , maka $ a-b-c+d+e = .... $ A. $ -\frac{39}{4} \, $ B. $ -\frac{1}{4} \, $ C. $ -\frac{7}{3} \, $ D. $ \frac{15}{4} \, $ E. $ \frac{39}{4} \, $ Nomor 5 Himpunan penyelesaian dari pertidaksamaan $ \sqrt{x^2 - 4} \leq 3 - x $ adalah ... A. $ \{ x \in R x \leq -2 \text{ atau } 2 \leq x \leq \frac{13}{6} \} \, $ B. $ \{ x \in R x \leq -2 \text{ atau } 2 \leq x \} \, $ C. $ \{ x \in R -2 \leq x \leq \frac{13}{6} \} \, $ D. $ \{ x \in R x \leq \frac{13}{6} \} \, $ E. $ \{ x \in R 2 \leq x \leq \frac{13}{6} \} \, $ Nomor 6 Barisan tiga bilangan real membentuk barisan aritmetika dengan suku awal 9. Jika 2 ditambahkan pada suku ke-2 dan 20 ditambahkan ke suku ke-3, tiga bilangan real tersebut membentuk barisan geometri. Nilai yang mungkin untuk suku ke-3 barisan geometri tersebut adalah .... A. $ 1 \, $ B. $ 6 \, $ C. $ 21 \, $ D. $ 29 \, $ E. $ 36 $ Nomor 7 Jika $ A = \left[ \begin{matrix} -1 & -1 & x \\ 2 & y & z \end{matrix} \right] $ , $ B = \left[ \begin{matrix} 1 & 0 \\ 1 & -2 \\ -1 & 1 \end{matrix} \right] $ , dan determinan matriks $ AB $ adalah $ 0 $ , maka nilai $ 2xy - x - y $ adalah .... A. $ -8 \, $ B. $ -2 \, $ C. $ 2 \, $ D. $ 6 \, $ E. $ 12 $ Nomor 8 Daerah R persegi panjang yang memiliki titik sudut $ -1,1 $ , $ 4,1 $ , $ -1,-5 $ dan $ 4,-5 $. Suatu titik akan dipilih dari R. Probabilitas akan terpilih titik yang berada di atas garis $ y = \frac{3}{2}x - 5 $ adalah ... A. $ \frac{1}{5} \, $ B. $ \frac{2}{5} \, $ C. $ \frac{3}{5} \, $ D. $ \frac{1}{4} \, $ E. $ \frac{3}{4} $ Nomor 9 Diketahui $ f $ adalah fungsi kuadrat yang mempunyai garis singgung $ y = -x+1 $ di titik $ x = -1 $. Jika $ f^\prime 1 = 3 $ , maka $ f4 = ... $ A. $ 11 \, $ B. $ 12 \, $ C. $ 14 \, $ D. $ 17 \, $ E. $ 22 $ Nomor 10 Banyak cara memilih 3 pasang pemain untuk bermain dalam permainan ganda dari 10 pemain yang ada adalah .... A. $ 1250 \, $ B. $ 2130 \, $ C. $ 3150 \, $ D. $ 3500 \, $ E. $ 9450 $ Nomor 11 Diketahui segitiga siku-siku AED dan BFC dibuat di dalam persegi panjang ABCD sehingga F terletak pada DE seperti tampak pada gambar. Jika $ AE = 7 $ , $ ED = 24 $ , dan $ BF = 15 $ , maka panjang AB adalah .... A. $ \frac{62}{3} \, $ B. $ 20 \, $ C. $ \frac{50}{3} \, $ D. $ 16 \, $ E. $ \frac{44}{3} $ Nomor 12 Jika $ f \left \frac{x}{3} \right = x^2 + x + 1 $ , maka jumlah kuadrat nilai-nilai $ y $ yang memenuhi $ f3y = 5 $ adalah .... A. $ \frac{1}{2} \, $ B. $ \frac{1}{3} \, $ C. $ \frac{1}{4} \, $ D. $ \frac{1}{7} \, $ E. $ \frac{1}{9} $ Nomor 13 Gunakan petunjuk C. Jika $ fx+1 = \frac{2x-7}{x+1} $ , maka .... 1. $ f-1 = 11 $ 2. $ f^{-1} -1 = 3 $ 3. $ f \circ f ^{-1} -1 = -9 $ 4. $ \frac{1}{f^{-1}-2} = \frac{4}{9} $ Nomor 14 Gunakan petunjuk C. Jika $ fx = \frac{ax+b}{x^2 + 1} $ , $ f0 = f^\prime 0 $ , dan $ f^\prime -1 = 1 $ , maka .... 1. $ a + b = 4 $ 2. $ f1 = 2 $ 3. $ f-2 = -\frac{2}{5} $ 4. $ y = x + 1 \, $ adalah persamaan garis singgung di $ x = -1 $ Nomor 15 Gunakan petunjuk C. Rata-rata tiga bilangan adalah 8 lebihnya dibandingkan dengan bilangan terkecil dan 14 kurangnya dibandingkan dengan bilangan terbesar. Jika median ketiga bilangan tersebut adalah 10, maka ... 1. jangkauannya adalah 22 2. variansinya adalah 124 3. jumlahnya adalah 48 4. simpangan rata-ratanya adalah 8 Soal dan Pembahasan Matematika Dasar Simak UI 2018 New Update!!! Soal dan Pembahasan No 1-5 Matematika Dasar Simak UI 2018 Pembahasan Matematika Dasar Simak UI 2019 Nomor 1 Pembahasan Matematika Dasar Simak UI 2019 Nomor 2 Pembahasan Matematika Dasar Simak UI 2019 Nomor 3 Pembahasan Matematika Dasar Simak UI 2019 Nomor 4 Pembahasan Matematika Dasar Simak UI 2019 Nomor 5 Soal dan Pembahasan No 6-10 Matematika Dasar Simak UI 2018 Pembahasan Matematika Dasar Simak UI 2019 Nomor 6 Pembahasan Matematika Dasar Simak UI 2019 Nomor 7 Pembahasan Matematika Dasar Simak UI 2019 Nomor 8 Pembahasan Matematika Dasar Simak UI 2019 Nomor 9 Pembahasan Matematika Dasar Simak UI 2019 Nomor 10 Soal dan Pembahasan No 11-15 Matematika Dasar Simak UI 2018 Pembahasan Matematika Dasar Simak UI 2019 Nomor 11 Pembahasan Matematika Dasar Simak UI 2019 Nomor 12 Pembahasan Matematika Dasar Simak UI 2019 Nomor 13 Pembahasan Matematika Dasar Simak UI 2019 Nomor 14 Pembahasan Matematika Dasar Simak UI 2019 Nomor 15 You Might Also Like